CatBoost is a fast, scalable, high performance open-source gradient boosting on decision trees library

Get started


Categorical features support
Improve your training results with CatBoost that allows you to use non-numeric factors, instead of having to pre-process your data or spend time and effort turning it to numbers.
Fast and scalable GPU version
Train your model on a fast implementation of gradient-boosting algorithm for GPU. Use a multi-card configuration for large datasets.
Improved accuracy
Reduce overfitting when constructing your models with a novel gradient-boosting scheme.
Fast prediction
Apply your trained model quickly and efficiently even to latency-critical tasks using CatBoost's model applier
User-friendly API interface
Launch CatBoost right from the command line or enjoy a user-friendly API for Python or R, with tools for formula analysis and training visualisation.


CatBoost is an algorithm for gradient boosting on decision trees. Developed by Yandex researchers and engineers, it is the successor of the MatrixNet algorithm that is widely used within the company for ranking tasks, forecasting and making recommendations. It is universal and can be applied across a wide range of areas and to 
a variety of problems.

Latest News