class CatBoostClassifier extends ProbabilisticClassifier[Vector, CatBoostClassifier, CatBoostClassificationModel] with CatBoostPredictorTrait[CatBoostClassifier, CatBoostClassificationModel] with ClassifierTrainingParamsTrait
Class to train CatBoostClassificationModel
The default optimized loss function depends on various conditions:
Logloss
— The label column has only two different values or the targetBorder parameter is specified.MultiClass
— The label column has more than two different values and the targetBorder parameter is not specified.
Examples
Binary classification.
val spark = SparkSession.builder() .master("local[*]") .appName("ClassifierTest") .getOrCreate(); val srcDataSchema = Seq( StructField("features", SQLDataTypes.VectorType), StructField("label", StringType) ) val trainData = Seq( Row(Vectors.dense(0.1, 0.2, 0.11), "0"), Row(Vectors.dense(0.97, 0.82, 0.33), "1"), Row(Vectors.dense(0.13, 0.22, 0.23), "1"), Row(Vectors.dense(0.8, 0.62, 0.0), "0") ) val trainDf = spark.createDataFrame(spark.sparkContext.parallelize(trainData), StructType(srcDataSchema)) val trainPool = new Pool(trainDf) val evalData = Seq( Row(Vectors.dense(0.22, 0.33, 0.9), "1"), Row(Vectors.dense(0.11, 0.1, 0.21), "0"), Row(Vectors.dense(0.77, 0.0, 0.0), "1") ) val evalDf = spark.createDataFrame(spark.sparkContext.parallelize(evalData), StructType(srcDataSchema)) val evalPool = new Pool(evalDf) val classifier = new CatBoostClassifier val model = classifier.fit(trainPool, Array[Pool](evalPool)) val predictions = model.transform(evalPool.data) predictions.show()
Multiclassification.
val spark = SparkSession.builder() .master("local[*]") .appName("ClassifierTest") .getOrCreate(); val srcDataSchema = Seq( StructField("features", SQLDataTypes.VectorType), StructField("label", StringType) ) val trainData = Seq( Row(Vectors.dense(0.1, 0.2, 0.11), "1"), Row(Vectors.dense(0.97, 0.82, 0.33), "2"), Row(Vectors.dense(0.13, 0.22, 0.23), "1"), Row(Vectors.dense(0.8, 0.62, 0.0), "0") ) val trainDf = spark.createDataFrame(spark.sparkContext.parallelize(trainData), StructType(srcDataSchema)) val trainPool = new Pool(trainDf) val evalData = Seq( Row(Vectors.dense(0.22, 0.33, 0.9), "2"), Row(Vectors.dense(0.11, 0.1, 0.21), "0"), Row(Vectors.dense(0.77, 0.0, 0.0), "1") ) val evalDf = spark.createDataFrame(spark.sparkContext.parallelize(evalData), StructType(srcDataSchema)) val evalPool = new Pool(evalDf) val classifier = new CatBoostClassifier val model = classifier.fit(trainPool, Array[Pool](evalPool)) val predictions = model.transform(evalPool.data) predictions.show()
Serialization
Supports standard Spark MLLib serialization. Data can be saved to distributed filesystem like HDFS or local files.
Examples== Save:
val classifier = new CatBoostClassifier().setIterations(100) val path = "/home/user/catboost_classifiers/classifier0" classifier.write.save(path)
Load:
val path = "/home/user/catboost_classifiers/classifier0" val classifier = CatBoostClassifier.load(path) val trainPool : Pool = ... init Pool ... val model = classifier.fit(trainPool)
- Alphabetic
- By Inheritance
- CatBoostClassifier
- ClassifierTrainingParamsTrait
- TrainingParamsTrait
- QuantizationParamsTrait
- ThreadCountParams
- IgnoredFeaturesParams
- CatBoostPredictorTrait
- DefaultParamsWritable
- MLWritable
- DatasetParamsTrait
- HasWeightCol
- ProbabilisticClassifier
- ProbabilisticClassifierParams
- HasThresholds
- HasProbabilityCol
- Classifier
- ClassifierParams
- HasRawPredictionCol
- Predictor
- PredictorParams
- HasPredictionCol
- HasFeaturesCol
- HasLabelCol
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
addEstimatedCtrFeatures(quantizedTrainPool: Pool, quantizedEvalPools: Array[Pool], updatedCatBoostJsonParams: JObject, classTargetPreprocessor: Option[TClassTargetPreprocessor] = None, serializedLabelConverter: TVector_i8 = new TVector_i8): (Pool, Array[Pool], CtrsContext)
- returns
(preprocessedTrainPool, preprocessedEvalPools, ctrsContext)
- Attributes
- protected
- Definition Classes
- CatBoostPredictorTrait
-
final
val
allowConstLabel: BooleanParam
- Definition Classes
- TrainingParamsTrait
-
final
val
allowWritingFiles: BooleanParam
- Definition Classes
- TrainingParamsTrait
-
final
val
approxOnFullHistory: BooleanParam
- Definition Classes
- TrainingParamsTrait
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
final
val
autoClassWeights: EnumParam[EAutoClassWeightsType]
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
val
baggingTemperature: FloatParam
- Definition Classes
- TrainingParamsTrait
-
final
val
bestModelMinTrees: IntParam
- Definition Classes
- TrainingParamsTrait
-
final
val
bootstrapType: EnumParam[EBootstrapType]
- Definition Classes
- TrainingParamsTrait
-
final
val
borderCount: IntParam
- Definition Classes
- QuantizationParamsTrait
-
final
val
classNames: StringArrayParam
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
val
classWeightsList: DoubleArrayParam
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
val
classWeightsMap: OrderedStringMapParam[Double]
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
val
classesCount: IntParam
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
def
clear(param: Param[_]): CatBoostClassifier.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
val
connectTimeout: DurationParam
- Definition Classes
- TrainingParamsTrait
-
def
copy(extra: ParamMap): CatBoostClassifier
- Definition Classes
- CatBoostClassifier → Predictor → Estimator → PipelineStage → Params
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
def
createModel(nativeModel: TFullModel): CatBoostClassificationModel
- Attributes
- protected
- Definition Classes
- CatBoostClassifier → CatBoostPredictorTrait
-
final
val
customMetric: StringArrayParam
- Definition Classes
- TrainingParamsTrait
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
final
val
depth: IntParam
- Definition Classes
- TrainingParamsTrait
-
final
val
diffusionTemperature: FloatParam
- Definition Classes
- TrainingParamsTrait
-
final
val
earlyStoppingRounds: IntParam
- Definition Classes
- TrainingParamsTrait
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
val
evalMetric: Param[String]
- Definition Classes
- TrainingParamsTrait
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
def
extractInstances(dataset: Dataset[_], numClasses: Int): RDD[Instance]
- Attributes
- protected
- Definition Classes
- ClassifierParams
-
def
extractInstances(dataset: Dataset[_], validateInstance: (Instance) ⇒ Unit): RDD[Instance]
- Attributes
- protected
- Definition Classes
- PredictorParams
-
def
extractInstances(dataset: Dataset[_]): RDD[Instance]
- Attributes
- protected
- Definition Classes
- PredictorParams
-
def
extractLabeledPoints(dataset: Dataset[_], numClasses: Int): RDD[LabeledPoint]
- Attributes
- protected
- Definition Classes
- Classifier
-
def
extractLabeledPoints(dataset: Dataset[_]): RDD[LabeledPoint]
- Attributes
- protected
- Definition Classes
- Predictor
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
final
val
featureBorderType: EnumParam[EBorderSelectionType]
- Definition Classes
- QuantizationParamsTrait
-
final
val
featureWeightsList: DoubleArrayParam
- Definition Classes
- TrainingParamsTrait
-
final
val
featureWeightsMap: OrderedStringMapParam[Double]
- Definition Classes
- TrainingParamsTrait
-
final
val
featuresCol: Param[String]
- Definition Classes
- HasFeaturesCol
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
val
firstFeatureUsePenaltiesList: DoubleArrayParam
- Definition Classes
- TrainingParamsTrait
-
final
val
firstFeatureUsePenaltiesMap: OrderedStringMapParam[Double]
- Definition Classes
- TrainingParamsTrait
-
def
fit(trainPool: Pool, evalPools: Array[Pool] = Array[Pool]()): CatBoostClassificationModel
Additional variant of
fit
method that accepts CatBoost's Pool s and allows to specify additional datasets for computing evaluation metrics and overfitting detection similarily to CatBoost's other APIs.Additional variant of
fit
method that accepts CatBoost's Pool s and allows to specify additional datasets for computing evaluation metrics and overfitting detection similarily to CatBoost's other APIs.- trainPool
The input training dataset.
- evalPools
The validation datasets used for the following processes:
- overfitting detector
- best iteration selection
- monitoring metrics' changes
- returns
trained model
- Definition Classes
- CatBoostPredictorTrait
-
def
fit(dataset: Dataset[_]): CatBoostClassificationModel
- Definition Classes
- Predictor → Estimator
-
def
fit(dataset: Dataset[_], paramMaps: Array[ParamMap]): Seq[CatBoostClassificationModel]
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], paramMap: ParamMap): CatBoostClassificationModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): CatBoostClassificationModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" ) @varargs()
-
final
val
foldLenMultiplier: FloatParam
- Definition Classes
- TrainingParamsTrait
-
final
val
foldPermutationBlock: IntParam
- Definition Classes
- TrainingParamsTrait
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
final
def
getAllowConstLabel: Boolean
- Definition Classes
- TrainingParamsTrait
-
final
def
getAllowWritingFiles: Boolean
- Definition Classes
- TrainingParamsTrait
-
final
def
getApproxOnFullHistory: Boolean
- Definition Classes
- TrainingParamsTrait
-
final
def
getAutoClassWeights: EAutoClassWeightsType
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
def
getBaggingTemperature: Float
- Definition Classes
- TrainingParamsTrait
-
final
def
getBestModelMinTrees: Int
- Definition Classes
- TrainingParamsTrait
-
final
def
getBootstrapType: EBootstrapType
- Definition Classes
- TrainingParamsTrait
-
final
def
getBorderCount: Int
- Definition Classes
- QuantizationParamsTrait
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
getClassNames: Array[String]
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
def
getClassWeightsList: Array[Double]
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
def
getClassWeightsMap: LinkedHashMap[String, Double]
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
def
getClassesCount: Int
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
def
getConnectTimeout: Duration
- Definition Classes
- TrainingParamsTrait
-
final
def
getCustomMetric: Array[String]
- Definition Classes
- TrainingParamsTrait
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
final
def
getDepth: Int
- Definition Classes
- TrainingParamsTrait
-
final
def
getDiffusionTemperature: Float
- Definition Classes
- TrainingParamsTrait
-
final
def
getEarlyStoppingRounds: Int
- Definition Classes
- TrainingParamsTrait
-
final
def
getEvalMetric: String
- Definition Classes
- TrainingParamsTrait
-
final
def
getFeatureBorderType: EBorderSelectionType
- Definition Classes
- QuantizationParamsTrait
-
final
def
getFeatureWeightsList: Array[Double]
- Definition Classes
- TrainingParamsTrait
-
final
def
getFeatureWeightsMap: LinkedHashMap[String, Double]
- Definition Classes
- TrainingParamsTrait
-
final
def
getFeaturesCol: String
- Definition Classes
- HasFeaturesCol
-
final
def
getFirstFeatureUsePenaltiesList: Array[Double]
- Definition Classes
- TrainingParamsTrait
-
final
def
getFirstFeatureUsePenaltiesMap: LinkedHashMap[String, Double]
- Definition Classes
- TrainingParamsTrait
-
final
def
getFoldLenMultiplier: Float
- Definition Classes
- TrainingParamsTrait
-
final
def
getFoldPermutationBlock: Int
- Definition Classes
- TrainingParamsTrait
-
final
def
getHasTime: Boolean
- Definition Classes
- TrainingParamsTrait
-
final
def
getIgnoredFeaturesIndices: Array[Int]
- Definition Classes
- IgnoredFeaturesParams
-
final
def
getIgnoredFeaturesNames: Array[String]
- Definition Classes
- IgnoredFeaturesParams
-
final
def
getInputBorders: String
- Definition Classes
- QuantizationParamsTrait
-
final
def
getIterations: Int
- Definition Classes
- TrainingParamsTrait
-
final
def
getL2LeafReg: Float
- Definition Classes
- TrainingParamsTrait
-
final
def
getLabelCol: String
- Definition Classes
- HasLabelCol
-
final
def
getLeafEstimationBacktracking: ELeavesEstimationStepBacktracking
- Definition Classes
- TrainingParamsTrait
-
final
def
getLeafEstimationIterations: Int
- Definition Classes
- TrainingParamsTrait
-
final
def
getLeafEstimationMethod: ELeavesEstimation
- Definition Classes
- TrainingParamsTrait
-
final
def
getLearningRate: Float
- Definition Classes
- TrainingParamsTrait
-
final
def
getLoggingLevel: ELoggingLevel
- Definition Classes
- TrainingParamsTrait
-
final
def
getLossFunction: String
- Definition Classes
- TrainingParamsTrait
-
final
def
getMetricPeriod: Int
- Definition Classes
- TrainingParamsTrait
-
final
def
getModelShrinkMode: EModelShrinkMode
- Definition Classes
- TrainingParamsTrait
-
final
def
getModelShrinkRate: Float
- Definition Classes
- TrainingParamsTrait
-
final
def
getMvsReg: Float
- Definition Classes
- TrainingParamsTrait
-
final
def
getNanMode: ENanMode
- Definition Classes
- QuantizationParamsTrait
-
def
getNumClasses(dataset: Dataset[_], maxNumClasses: Int): Int
- Attributes
- protected
- Definition Classes
- Classifier
-
final
def
getOdPval: Float
- Definition Classes
- TrainingParamsTrait
-
final
def
getOdType: EOverfittingDetectorType
- Definition Classes
- TrainingParamsTrait
-
final
def
getOdWait: Int
- Definition Classes
- TrainingParamsTrait
-
final
def
getOneHotMaxSize: Int
- Definition Classes
- TrainingParamsTrait
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
final
def
getPenaltiesCoefficient: Float
- Definition Classes
- TrainingParamsTrait
-
final
def
getPerFloatFeatureQuantizaton: Array[String]
- Definition Classes
- QuantizationParamsTrait
-
final
def
getPerObjectFeaturePenaltiesList: Array[Double]
- Definition Classes
- TrainingParamsTrait
-
final
def
getPerObjectFeaturePenaltiesMap: LinkedHashMap[String, Double]
- Definition Classes
- TrainingParamsTrait
-
final
def
getPredictionCol: String
- Definition Classes
- HasPredictionCol
-
final
def
getProbabilityCol: String
- Definition Classes
- HasProbabilityCol
-
final
def
getRandomSeed: Int
- Definition Classes
- TrainingParamsTrait
-
final
def
getRandomStrength: Float
- Definition Classes
- TrainingParamsTrait
-
final
def
getRawPredictionCol: String
- Definition Classes
- HasRawPredictionCol
-
final
def
getRsm: Float
- Definition Classes
- TrainingParamsTrait
-
final
def
getSamplingFrequency: ESamplingFrequency
- Definition Classes
- TrainingParamsTrait
-
final
def
getSamplingUnit: ESamplingUnit
- Definition Classes
- TrainingParamsTrait
-
final
def
getSaveSnapshot: Boolean
- Definition Classes
- TrainingParamsTrait
-
final
def
getScalePosWeight: Float
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
def
getScoreFunction: EScoreFunction
- Definition Classes
- TrainingParamsTrait
-
final
def
getSnapshotFile: String
- Definition Classes
- TrainingParamsTrait
-
final
def
getSnapshotInterval: Duration
- Definition Classes
- TrainingParamsTrait
-
final
def
getSparkPartitionCount: Int
- Definition Classes
- TrainingParamsTrait
-
final
def
getSubsample: Float
- Definition Classes
- TrainingParamsTrait
-
final
def
getTargetBorder: Float
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
def
getThreadCount: Int
- Definition Classes
- ThreadCountParams
-
def
getThresholds: Array[Double]
- Definition Classes
- HasThresholds
-
final
def
getTrainDir: String
- Definition Classes
- TrainingParamsTrait
-
final
def
getUseBestModel: Boolean
- Definition Classes
- TrainingParamsTrait
-
final
def
getWeightCol: String
- Definition Classes
- HasWeightCol
-
final
def
getWorkerInitializationTimeout: Duration
- Definition Classes
- TrainingParamsTrait
-
final
def
getWorkerMaxFailures: Int
- Definition Classes
- TrainingParamsTrait
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
final
val
hasTime: BooleanParam
- Definition Classes
- TrainingParamsTrait
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
val
ignoredFeaturesIndices: IntArrayParam
- Definition Classes
- IgnoredFeaturesParams
-
final
val
ignoredFeaturesNames: StringArrayParam
- Definition Classes
- IgnoredFeaturesParams
-
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
final
val
inputBorders: Param[String]
- Definition Classes
- QuantizationParamsTrait
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
final
val
iterations: IntParam
- Definition Classes
- TrainingParamsTrait
-
final
val
l2LeafReg: FloatParam
- Definition Classes
- TrainingParamsTrait
-
final
val
labelCol: Param[String]
- Definition Classes
- HasLabelCol
-
final
val
leafEstimationBacktracking: EnumParam[ELeavesEstimationStepBacktracking]
- Definition Classes
- TrainingParamsTrait
-
final
val
leafEstimationIterations: IntParam
- Definition Classes
- TrainingParamsTrait
-
final
val
leafEstimationMethod: EnumParam[ELeavesEstimation]
- Definition Classes
- TrainingParamsTrait
-
final
val
learningRate: FloatParam
- Definition Classes
- TrainingParamsTrait
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
final
val
loggingLevel: EnumParam[ELoggingLevel]
- Definition Classes
- TrainingParamsTrait
-
final
val
lossFunction: Param[String]
- Definition Classes
- TrainingParamsTrait
-
final
val
metricPeriod: IntParam
- Definition Classes
- TrainingParamsTrait
-
final
val
modelShrinkMode: EnumParam[EModelShrinkMode]
- Definition Classes
- TrainingParamsTrait
-
final
val
modelShrinkRate: FloatParam
- Definition Classes
- TrainingParamsTrait
-
final
val
mvsReg: FloatParam
- Definition Classes
- TrainingParamsTrait
-
final
val
nanMode: EnumParam[ENanMode]
- Definition Classes
- QuantizationParamsTrait
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
val
odPval: FloatParam
- Definition Classes
- TrainingParamsTrait
-
final
val
odType: EnumParam[EOverfittingDetectorType]
- Definition Classes
- TrainingParamsTrait
-
final
val
odWait: IntParam
- Definition Classes
- TrainingParamsTrait
-
final
val
oneHotMaxSize: IntParam
- Definition Classes
- TrainingParamsTrait
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
final
val
penaltiesCoefficient: FloatParam
- Definition Classes
- TrainingParamsTrait
-
final
val
perFloatFeatureQuantizaton: StringArrayParam
- Definition Classes
- QuantizationParamsTrait
-
final
val
perObjectFeaturePenaltiesList: DoubleArrayParam
- Definition Classes
- TrainingParamsTrait
-
final
val
perObjectFeaturePenaltiesMap: OrderedStringMapParam[Double]
- Definition Classes
- TrainingParamsTrait
-
final
val
predictionCol: Param[String]
- Definition Classes
- HasPredictionCol
-
def
preprocessBeforeTraining(quantizedTrainPool: Pool, quantizedEvalPools: Array[Pool]): (Pool, Array[Pool], CatBoostTrainingContext)
override in descendants if necessary
override in descendants if necessary
- returns
(preprocessedTrainPool, preprocessedEvalPools, catBoostTrainingContext)
- Attributes
- protected
- Definition Classes
- CatBoostClassifier → CatBoostPredictorTrait
-
final
val
probabilityCol: Param[String]
- Definition Classes
- HasProbabilityCol
-
final
val
randomSeed: IntParam
- Definition Classes
- TrainingParamsTrait
-
final
val
randomStrength: FloatParam
- Definition Classes
- TrainingParamsTrait
-
final
val
rawPredictionCol: Param[String]
- Definition Classes
- HasRawPredictionCol
-
final
val
rsm: FloatParam
- Definition Classes
- TrainingParamsTrait
-
final
val
samplingFrequency: EnumParam[ESamplingFrequency]
- Definition Classes
- TrainingParamsTrait
-
final
val
samplingUnit: EnumParam[ESamplingUnit]
- Definition Classes
- TrainingParamsTrait
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
final
val
saveSnapshot: BooleanParam
- Definition Classes
- TrainingParamsTrait
-
final
val
scalePosWeight: FloatParam
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
val
scoreFunction: EnumParam[EScoreFunction]
- Definition Classes
- TrainingParamsTrait
-
final
def
set(paramPair: ParamPair[_]): CatBoostClassifier.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): CatBoostClassifier.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): CatBoostClassifier.this.type
- Definition Classes
- Params
-
final
def
setAllowConstLabel(value: Boolean): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setAllowWritingFiles(value: Boolean): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setApproxOnFullHistory(value: Boolean): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setAutoClassWeights(value: EAutoClassWeightsType): CatBoostClassifier.this.type
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
def
setBaggingTemperature(value: Float): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setBestModelMinTrees(value: Int): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setBootstrapType(value: EBootstrapType): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setBorderCount(value: Int): CatBoostClassifier.this.type
- Definition Classes
- QuantizationParamsTrait
-
final
def
setClassNames(value: Array[String]): CatBoostClassifier.this.type
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
def
setClassWeightsList(value: Array[Double]): CatBoostClassifier.this.type
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
def
setClassWeightsMap(value: LinkedHashMap[String, Double]): CatBoostClassifier.this.type
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
def
setClassesCount(value: Int): CatBoostClassifier.this.type
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
def
setConnectTimeout(value: Duration): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setCustomMetric(value: Array[String]): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setDefault(paramPairs: ParamPair[_]*): CatBoostClassifier.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): CatBoostClassifier.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDepth(value: Int): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setDiffusionTemperature(value: Float): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setEarlyStoppingRounds(value: Int): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setEvalMetric(value: String): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setFeatureBorderType(value: EBorderSelectionType): CatBoostClassifier.this.type
- Definition Classes
- QuantizationParamsTrait
-
final
def
setFeatureWeightsList(value: Array[Double]): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setFeatureWeightsMap(value: LinkedHashMap[String, Double]): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
def
setFeaturesCol(value: String): CatBoostClassifier
- Definition Classes
- Predictor
-
final
def
setFirstFeatureUsePenaltiesList(value: Array[Double]): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setFirstFeatureUsePenaltiesMap(value: LinkedHashMap[String, Double]): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setFoldLenMultiplier(value: Float): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setFoldPermutationBlock(value: Int): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setHasTime(value: Boolean): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setIgnoredFeaturesIndices(value: Array[Int]): CatBoostClassifier.this.type
- Definition Classes
- IgnoredFeaturesParams
-
final
def
setIgnoredFeaturesNames(value: Array[String]): CatBoostClassifier.this.type
- Definition Classes
- IgnoredFeaturesParams
-
final
def
setInputBorders(value: String): CatBoostClassifier.this.type
- Definition Classes
- QuantizationParamsTrait
-
final
def
setIterations(value: Int): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setL2LeafReg(value: Float): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
def
setLabelCol(value: String): CatBoostClassifier
- Definition Classes
- Predictor
-
final
def
setLeafEstimationBacktracking(value: ELeavesEstimationStepBacktracking): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setLeafEstimationIterations(value: Int): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setLeafEstimationMethod(value: ELeavesEstimation): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setLearningRate(value: Float): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setLoggingLevel(value: ELoggingLevel): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setLossFunction(value: String): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setMetricPeriod(value: Int): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setModelShrinkMode(value: EModelShrinkMode): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setModelShrinkRate(value: Float): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setMvsReg(value: Float): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setNanMode(value: ENanMode): CatBoostClassifier.this.type
- Definition Classes
- QuantizationParamsTrait
-
final
def
setOdPval(value: Float): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setOdType(value: EOverfittingDetectorType): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setOdWait(value: Int): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setOneHotMaxSize(value: Int): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setPenaltiesCoefficient(value: Float): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setPerFloatFeatureQuantizaton(value: Array[String]): CatBoostClassifier.this.type
- Definition Classes
- QuantizationParamsTrait
-
final
def
setPerObjectFeaturePenaltiesList(value: Array[Double]): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setPerObjectFeaturePenaltiesMap(value: LinkedHashMap[String, Double]): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
def
setPredictionCol(value: String): CatBoostClassifier
- Definition Classes
- Predictor
-
def
setProbabilityCol(value: String): CatBoostClassifier
- Definition Classes
- ProbabilisticClassifier
-
final
def
setRandomSeed(value: Int): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setRandomStrength(value: Float): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
def
setRawPredictionCol(value: String): CatBoostClassifier
- Definition Classes
- Classifier
-
final
def
setRsm(value: Float): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setSamplingFrequency(value: ESamplingFrequency): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setSamplingUnit(value: ESamplingUnit): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setSaveSnapshot(value: Boolean): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setScalePosWeight(value: Float): CatBoostClassifier.this.type
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
def
setScoreFunction(value: EScoreFunction): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setSnapshotFile(value: String): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setSnapshotInterval(value: Duration): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setSparkPartitionCount(value: Int): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setSubsample(value: Float): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setTargetBorder(value: Float): CatBoostClassifier.this.type
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
def
setThreadCount(value: Int): CatBoostClassifier.this.type
- Definition Classes
- ThreadCountParams
-
def
setThresholds(value: Array[Double]): CatBoostClassifier
- Definition Classes
- ProbabilisticClassifier
-
final
def
setTrainDir(value: String): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setUseBestModel(value: Boolean): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setWorkerInitializationTimeout(value: Duration): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setWorkerMaxFailures(value: Int): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
val
snapshotFile: Param[String]
- Definition Classes
- TrainingParamsTrait
-
final
val
snapshotInterval: DurationParam
- Definition Classes
- TrainingParamsTrait
-
final
val
sparkPartitionCount: IntParam
- Definition Classes
- TrainingParamsTrait
-
final
val
subsample: FloatParam
- Definition Classes
- TrainingParamsTrait
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
final
val
targetBorder: FloatParam
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
val
threadCount: IntParam
- Definition Classes
- ThreadCountParams
-
val
thresholds: DoubleArrayParam
- Definition Classes
- HasThresholds
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
def
train(dataset: Dataset[_]): CatBoostClassificationModel
- Attributes
- protected
- Definition Classes
- CatBoostPredictorTrait → Predictor
-
final
val
trainDir: Param[String]
- Definition Classes
- TrainingParamsTrait
-
def
transformSchema(schema: StructType): StructType
- Definition Classes
- Predictor → PipelineStage
-
def
transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
- Definition Classes
- CatBoostClassifier → Identifiable
-
final
val
useBestModel: BooleanParam
- Definition Classes
- TrainingParamsTrait
-
def
validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType
- Attributes
- protected
- Definition Classes
- ProbabilisticClassifierParams → ClassifierParams → PredictorParams
-
def
validateLabel(label: Double, numClasses: Int): Unit
- Attributes
- protected
- Definition Classes
- Classifier
-
def
validateNumClasses(numClasses: Int): Unit
- Attributes
- protected
- Definition Classes
- Classifier
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
val
weightCol: Param[String]
- Definition Classes
- HasWeightCol
-
final
val
workerInitializationTimeout: DurationParam
- Definition Classes
- TrainingParamsTrait
-
final
val
workerMaxFailures: IntParam
- Definition Classes
- TrainingParamsTrait
-
def
write: MLWriter
- Definition Classes
- DefaultParamsWritable → MLWritable