class CatBoostClassifier extends ProbabilisticClassifier[Vector, CatBoostClassifier, CatBoostClassificationModel] with CatBoostPredictorTrait[CatBoostClassifier, CatBoostClassificationModel] with ClassifierTrainingParamsTrait
Class to train CatBoostClassificationModel
The default optimized loss function depends on various conditions:
Logloss— The label column has only two different values or the targetBorder parameter is specified.MultiClass— The label column has more than two different values and the targetBorder parameter is not specified.
Examples
Binary classification.
val spark = SparkSession.builder() .master("local[*]") .appName("ClassifierTest") .getOrCreate(); val srcDataSchema = Seq( StructField("features", SQLDataTypes.VectorType), StructField("label", StringType) ) val trainData = Seq( Row(Vectors.dense(0.1, 0.2, 0.11), "0"), Row(Vectors.dense(0.97, 0.82, 0.33), "1"), Row(Vectors.dense(0.13, 0.22, 0.23), "1"), Row(Vectors.dense(0.8, 0.62, 0.0), "0") ) val trainDf = spark.createDataFrame(spark.sparkContext.parallelize(trainData), StructType(srcDataSchema)) val trainPool = new Pool(trainDf) val evalData = Seq( Row(Vectors.dense(0.22, 0.33, 0.9), "1"), Row(Vectors.dense(0.11, 0.1, 0.21), "0"), Row(Vectors.dense(0.77, 0.0, 0.0), "1") ) val evalDf = spark.createDataFrame(spark.sparkContext.parallelize(evalData), StructType(srcDataSchema)) val evalPool = new Pool(evalDf) val classifier = new CatBoostClassifier val model = classifier.fit(trainPool, Array[Pool](evalPool)) val predictions = model.transform(evalPool.data) predictions.show()
Multiclassification.
val spark = SparkSession.builder() .master("local[*]") .appName("ClassifierTest") .getOrCreate(); val srcDataSchema = Seq( StructField("features", SQLDataTypes.VectorType), StructField("label", StringType) ) val trainData = Seq( Row(Vectors.dense(0.1, 0.2, 0.11), "1"), Row(Vectors.dense(0.97, 0.82, 0.33), "2"), Row(Vectors.dense(0.13, 0.22, 0.23), "1"), Row(Vectors.dense(0.8, 0.62, 0.0), "0") ) val trainDf = spark.createDataFrame(spark.sparkContext.parallelize(trainData), StructType(srcDataSchema)) val trainPool = new Pool(trainDf) val evalData = Seq( Row(Vectors.dense(0.22, 0.33, 0.9), "2"), Row(Vectors.dense(0.11, 0.1, 0.21), "0"), Row(Vectors.dense(0.77, 0.0, 0.0), "1") ) val evalDf = spark.createDataFrame(spark.sparkContext.parallelize(evalData), StructType(srcDataSchema)) val evalPool = new Pool(evalDf) val classifier = new CatBoostClassifier val model = classifier.fit(trainPool, Array[Pool](evalPool)) val predictions = model.transform(evalPool.data) predictions.show()
Serialization
Supports standard Spark MLLib serialization. Data can be saved to distributed filesystem like HDFS or local files.
Examples== Save:
val classifier = new CatBoostClassifier().setIterations(100) val path = "/home/user/catboost_classifiers/classifier0" classifier.write.save(path)
Load:
val path = "/home/user/catboost_classifiers/classifier0" val classifier = CatBoostClassifier.load(path) val trainPool : Pool = ... init Pool ... val model = classifier.fit(trainPool)
- Alphabetic
- By Inheritance
- CatBoostClassifier
- ClassifierTrainingParamsTrait
- TrainingParamsTrait
- QuantizationParamsTrait
- ThreadCountParams
- IgnoredFeaturesParams
- CatBoostPredictorTrait
- DefaultParamsWritable
- MLWritable
- DatasetParamsTrait
- HasWeightCol
- ProbabilisticClassifier
- ProbabilisticClassifierParams
- HasThresholds
- HasProbabilityCol
- Classifier
- ClassifierParams
- HasRawPredictionCol
- Predictor
- PredictorParams
- HasPredictionCol
- HasFeaturesCol
- HasLabelCol
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
- Attributes
- protected
- Definition Classes
- Params
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
addEstimatedCtrFeatures(quantizedTrainPool: Pool, quantizedEvalPools: Array[Pool], updatedCatBoostJsonParams: JObject, classTargetPreprocessor: Option[TClassTargetPreprocessor] = None, serializedLabelConverter: TVector_i8 = new TVector_i8): (Pool, Array[Pool], CtrsContext)
- returns
(preprocessedTrainPool, preprocessedEvalPools, ctrsContext)
- Attributes
- protected
- Definition Classes
- CatBoostPredictorTrait
-
final
val
allowConstLabel: BooleanParam
- Definition Classes
- TrainingParamsTrait
-
final
val
allowWritingFiles: BooleanParam
- Definition Classes
- TrainingParamsTrait
-
final
val
approxOnFullHistory: BooleanParam
- Definition Classes
- TrainingParamsTrait
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
final
val
autoClassWeights: EnumParam[EAutoClassWeightsType]
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
val
baggingTemperature: FloatParam
- Definition Classes
- TrainingParamsTrait
-
final
val
bestModelMinTrees: IntParam
- Definition Classes
- TrainingParamsTrait
-
final
val
bootstrapType: EnumParam[EBootstrapType]
- Definition Classes
- TrainingParamsTrait
-
final
val
borderCount: IntParam
- Definition Classes
- QuantizationParamsTrait
-
final
val
classNames: StringArrayParam
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
val
classWeightsList: DoubleArrayParam
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
val
classWeightsMap: OrderedStringMapParam[Double]
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
val
classesCount: IntParam
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
def
clear(param: Param[_]): CatBoostClassifier.this.type
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
val
connectTimeout: DurationParam
- Definition Classes
- TrainingParamsTrait
-
def
copy(extra: ParamMap): CatBoostClassifier
- Definition Classes
- CatBoostClassifier → Predictor → Estimator → PipelineStage → Params
-
def
copyValues[T <: Params](to: T, extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
def
createModel(nativeModel: TFullModel): CatBoostClassificationModel
- Attributes
- protected
- Definition Classes
- CatBoostClassifier → CatBoostPredictorTrait
-
final
val
customMetric: StringArrayParam
- Definition Classes
- TrainingParamsTrait
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
- Attributes
- protected
- Definition Classes
- Params
-
final
val
depth: IntParam
- Definition Classes
- TrainingParamsTrait
-
final
val
diffusionTemperature: FloatParam
- Definition Classes
- TrainingParamsTrait
-
final
val
earlyStoppingRounds: IntParam
- Definition Classes
- TrainingParamsTrait
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
val
evalMetric: Param[String]
- Definition Classes
- TrainingParamsTrait
-
def
explainParam(param: Param[_]): String
- Definition Classes
- Params
-
def
explainParams(): String
- Definition Classes
- Params
-
def
extractInstances(dataset: Dataset[_], numClasses: Int): RDD[Instance]
- Attributes
- protected
- Definition Classes
- ClassifierParams
-
def
extractInstances(dataset: Dataset[_], validateInstance: (Instance) ⇒ Unit): RDD[Instance]
- Attributes
- protected
- Definition Classes
- PredictorParams
-
def
extractInstances(dataset: Dataset[_]): RDD[Instance]
- Attributes
- protected
- Definition Classes
- PredictorParams
-
def
extractLabeledPoints(dataset: Dataset[_], numClasses: Int): RDD[LabeledPoint]
- Attributes
- protected
- Definition Classes
- Classifier
-
def
extractLabeledPoints(dataset: Dataset[_]): RDD[LabeledPoint]
- Attributes
- protected
- Definition Classes
- Predictor
-
final
def
extractParamMap(): ParamMap
- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
- Definition Classes
- Params
-
final
val
featureBorderType: EnumParam[EBorderSelectionType]
- Definition Classes
- QuantizationParamsTrait
-
final
val
featureWeightsList: DoubleArrayParam
- Definition Classes
- TrainingParamsTrait
-
final
val
featureWeightsMap: OrderedStringMapParam[Double]
- Definition Classes
- TrainingParamsTrait
-
final
val
featuresCol: Param[String]
- Definition Classes
- HasFeaturesCol
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
val
firstFeatureUsePenaltiesList: DoubleArrayParam
- Definition Classes
- TrainingParamsTrait
-
final
val
firstFeatureUsePenaltiesMap: OrderedStringMapParam[Double]
- Definition Classes
- TrainingParamsTrait
-
def
fit(trainPool: Pool, evalPools: Array[Pool] = Array[Pool]()): CatBoostClassificationModel
Additional variant of
fitmethod that accepts CatBoost's Pool s and allows to specify additional datasets for computing evaluation metrics and overfitting detection similarily to CatBoost's other APIs.Additional variant of
fitmethod that accepts CatBoost's Pool s and allows to specify additional datasets for computing evaluation metrics and overfitting detection similarily to CatBoost's other APIs.- trainPool
The input training dataset.
- evalPools
The validation datasets used for the following processes:
- overfitting detector
- best iteration selection
- monitoring metrics' changes
- returns
trained model
- Definition Classes
- CatBoostPredictorTrait
-
def
fit(dataset: Dataset[_]): CatBoostClassificationModel
- Definition Classes
- Predictor → Estimator
-
def
fit(dataset: Dataset[_], paramMaps: Array[ParamMap]): Seq[CatBoostClassificationModel]
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], paramMap: ParamMap): CatBoostClassificationModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): CatBoostClassificationModel
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" ) @varargs()
-
final
val
foldLenMultiplier: FloatParam
- Definition Classes
- TrainingParamsTrait
-
final
val
foldPermutationBlock: IntParam
- Definition Classes
- TrainingParamsTrait
-
final
def
get[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
final
def
getAllowConstLabel: Boolean
- Definition Classes
- TrainingParamsTrait
-
final
def
getAllowWritingFiles: Boolean
- Definition Classes
- TrainingParamsTrait
-
final
def
getApproxOnFullHistory: Boolean
- Definition Classes
- TrainingParamsTrait
-
final
def
getAutoClassWeights: EAutoClassWeightsType
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
def
getBaggingTemperature: Float
- Definition Classes
- TrainingParamsTrait
-
final
def
getBestModelMinTrees: Int
- Definition Classes
- TrainingParamsTrait
-
final
def
getBootstrapType: EBootstrapType
- Definition Classes
- TrainingParamsTrait
-
final
def
getBorderCount: Int
- Definition Classes
- QuantizationParamsTrait
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
getClassNames: Array[String]
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
def
getClassWeightsList: Array[Double]
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
def
getClassWeightsMap: LinkedHashMap[String, Double]
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
def
getClassesCount: Int
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
def
getConnectTimeout: Duration
- Definition Classes
- TrainingParamsTrait
-
final
def
getCustomMetric: Array[String]
- Definition Classes
- TrainingParamsTrait
-
final
def
getDefault[T](param: Param[T]): Option[T]
- Definition Classes
- Params
-
final
def
getDepth: Int
- Definition Classes
- TrainingParamsTrait
-
final
def
getDiffusionTemperature: Float
- Definition Classes
- TrainingParamsTrait
-
final
def
getEarlyStoppingRounds: Int
- Definition Classes
- TrainingParamsTrait
-
final
def
getEvalMetric: String
- Definition Classes
- TrainingParamsTrait
-
final
def
getFeatureBorderType: EBorderSelectionType
- Definition Classes
- QuantizationParamsTrait
-
final
def
getFeatureWeightsList: Array[Double]
- Definition Classes
- TrainingParamsTrait
-
final
def
getFeatureWeightsMap: LinkedHashMap[String, Double]
- Definition Classes
- TrainingParamsTrait
-
final
def
getFeaturesCol: String
- Definition Classes
- HasFeaturesCol
-
final
def
getFirstFeatureUsePenaltiesList: Array[Double]
- Definition Classes
- TrainingParamsTrait
-
final
def
getFirstFeatureUsePenaltiesMap: LinkedHashMap[String, Double]
- Definition Classes
- TrainingParamsTrait
-
final
def
getFoldLenMultiplier: Float
- Definition Classes
- TrainingParamsTrait
-
final
def
getFoldPermutationBlock: Int
- Definition Classes
- TrainingParamsTrait
-
final
def
getHasTime: Boolean
- Definition Classes
- TrainingParamsTrait
-
final
def
getIgnoredFeaturesIndices: Array[Int]
- Definition Classes
- IgnoredFeaturesParams
-
final
def
getIgnoredFeaturesNames: Array[String]
- Definition Classes
- IgnoredFeaturesParams
-
final
def
getInputBorders: String
- Definition Classes
- QuantizationParamsTrait
-
final
def
getIterations: Int
- Definition Classes
- TrainingParamsTrait
-
final
def
getL2LeafReg: Float
- Definition Classes
- TrainingParamsTrait
-
final
def
getLabelCol: String
- Definition Classes
- HasLabelCol
-
final
def
getLeafEstimationBacktracking: ELeavesEstimationStepBacktracking
- Definition Classes
- TrainingParamsTrait
-
final
def
getLeafEstimationIterations: Int
- Definition Classes
- TrainingParamsTrait
-
final
def
getLeafEstimationMethod: ELeavesEstimation
- Definition Classes
- TrainingParamsTrait
-
final
def
getLearningRate: Float
- Definition Classes
- TrainingParamsTrait
-
final
def
getLoggingLevel: ELoggingLevel
- Definition Classes
- TrainingParamsTrait
-
final
def
getLossFunction: String
- Definition Classes
- TrainingParamsTrait
-
final
def
getMetricPeriod: Int
- Definition Classes
- TrainingParamsTrait
-
final
def
getModelShrinkMode: EModelShrinkMode
- Definition Classes
- TrainingParamsTrait
-
final
def
getModelShrinkRate: Float
- Definition Classes
- TrainingParamsTrait
-
final
def
getMvsReg: Float
- Definition Classes
- TrainingParamsTrait
-
final
def
getNanMode: ENanMode
- Definition Classes
- QuantizationParamsTrait
-
def
getNumClasses(dataset: Dataset[_], maxNumClasses: Int): Int
- Attributes
- protected
- Definition Classes
- Classifier
-
final
def
getOdPval: Float
- Definition Classes
- TrainingParamsTrait
-
final
def
getOdType: EOverfittingDetectorType
- Definition Classes
- TrainingParamsTrait
-
final
def
getOdWait: Int
- Definition Classes
- TrainingParamsTrait
-
final
def
getOneHotMaxSize: Int
- Definition Classes
- TrainingParamsTrait
-
final
def
getOrDefault[T](param: Param[T]): T
- Definition Classes
- Params
-
def
getParam(paramName: String): Param[Any]
- Definition Classes
- Params
-
final
def
getPenaltiesCoefficient: Float
- Definition Classes
- TrainingParamsTrait
-
final
def
getPerFloatFeatureQuantizaton: Array[String]
- Definition Classes
- QuantizationParamsTrait
-
final
def
getPerObjectFeaturePenaltiesList: Array[Double]
- Definition Classes
- TrainingParamsTrait
-
final
def
getPerObjectFeaturePenaltiesMap: LinkedHashMap[String, Double]
- Definition Classes
- TrainingParamsTrait
-
final
def
getPredictionCol: String
- Definition Classes
- HasPredictionCol
-
final
def
getProbabilityCol: String
- Definition Classes
- HasProbabilityCol
-
final
def
getRandomSeed: Int
- Definition Classes
- TrainingParamsTrait
-
final
def
getRandomStrength: Float
- Definition Classes
- TrainingParamsTrait
-
final
def
getRawPredictionCol: String
- Definition Classes
- HasRawPredictionCol
-
final
def
getRsm: Float
- Definition Classes
- TrainingParamsTrait
-
final
def
getSamplingFrequency: ESamplingFrequency
- Definition Classes
- TrainingParamsTrait
-
final
def
getSamplingUnit: ESamplingUnit
- Definition Classes
- TrainingParamsTrait
-
final
def
getSaveSnapshot: Boolean
- Definition Classes
- TrainingParamsTrait
-
final
def
getScalePosWeight: Float
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
def
getScoreFunction: EScoreFunction
- Definition Classes
- TrainingParamsTrait
-
final
def
getSnapshotFile: String
- Definition Classes
- TrainingParamsTrait
-
final
def
getSnapshotInterval: Duration
- Definition Classes
- TrainingParamsTrait
-
final
def
getSparkPartitionCount: Int
- Definition Classes
- TrainingParamsTrait
-
final
def
getSubsample: Float
- Definition Classes
- TrainingParamsTrait
-
final
def
getTargetBorder: Float
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
def
getThreadCount: Int
- Definition Classes
- ThreadCountParams
-
def
getThresholds: Array[Double]
- Definition Classes
- HasThresholds
-
final
def
getTrainDir: String
- Definition Classes
- TrainingParamsTrait
-
final
def
getUseBestModel: Boolean
- Definition Classes
- TrainingParamsTrait
-
final
def
getWeightCol: String
- Definition Classes
- HasWeightCol
-
final
def
getWorkerInitializationTimeout: Duration
- Definition Classes
- TrainingParamsTrait
-
final
def
getWorkerMaxFailures: Int
- Definition Classes
- TrainingParamsTrait
-
final
def
hasDefault[T](param: Param[T]): Boolean
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
- Definition Classes
- Params
-
final
val
hasTime: BooleanParam
- Definition Classes
- TrainingParamsTrait
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
val
ignoredFeaturesIndices: IntArrayParam
- Definition Classes
- IgnoredFeaturesParams
-
final
val
ignoredFeaturesNames: StringArrayParam
- Definition Classes
- IgnoredFeaturesParams
-
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
final
val
inputBorders: Param[String]
- Definition Classes
- QuantizationParamsTrait
-
final
def
isDefined(param: Param[_]): Boolean
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
- Definition Classes
- Params
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
final
val
iterations: IntParam
- Definition Classes
- TrainingParamsTrait
-
final
val
l2LeafReg: FloatParam
- Definition Classes
- TrainingParamsTrait
-
final
val
labelCol: Param[String]
- Definition Classes
- HasLabelCol
-
final
val
leafEstimationBacktracking: EnumParam[ELeavesEstimationStepBacktracking]
- Definition Classes
- TrainingParamsTrait
-
final
val
leafEstimationIterations: IntParam
- Definition Classes
- TrainingParamsTrait
-
final
val
leafEstimationMethod: EnumParam[ELeavesEstimation]
- Definition Classes
- TrainingParamsTrait
-
final
val
learningRate: FloatParam
- Definition Classes
- TrainingParamsTrait
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
final
val
loggingLevel: EnumParam[ELoggingLevel]
- Definition Classes
- TrainingParamsTrait
-
final
val
lossFunction: Param[String]
- Definition Classes
- TrainingParamsTrait
-
final
val
metricPeriod: IntParam
- Definition Classes
- TrainingParamsTrait
-
final
val
modelShrinkMode: EnumParam[EModelShrinkMode]
- Definition Classes
- TrainingParamsTrait
-
final
val
modelShrinkRate: FloatParam
- Definition Classes
- TrainingParamsTrait
-
final
val
mvsReg: FloatParam
- Definition Classes
- TrainingParamsTrait
-
final
val
nanMode: EnumParam[ENanMode]
- Definition Classes
- QuantizationParamsTrait
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
val
odPval: FloatParam
- Definition Classes
- TrainingParamsTrait
-
final
val
odType: EnumParam[EOverfittingDetectorType]
- Definition Classes
- TrainingParamsTrait
-
final
val
odWait: IntParam
- Definition Classes
- TrainingParamsTrait
-
final
val
oneHotMaxSize: IntParam
- Definition Classes
- TrainingParamsTrait
-
lazy val
params: Array[Param[_]]
- Definition Classes
- Params
-
final
val
penaltiesCoefficient: FloatParam
- Definition Classes
- TrainingParamsTrait
-
final
val
perFloatFeatureQuantizaton: StringArrayParam
- Definition Classes
- QuantizationParamsTrait
-
final
val
perObjectFeaturePenaltiesList: DoubleArrayParam
- Definition Classes
- TrainingParamsTrait
-
final
val
perObjectFeaturePenaltiesMap: OrderedStringMapParam[Double]
- Definition Classes
- TrainingParamsTrait
-
final
val
predictionCol: Param[String]
- Definition Classes
- HasPredictionCol
-
def
preprocessBeforeTraining(quantizedTrainPool: Pool, quantizedEvalPools: Array[Pool]): (Pool, Array[Pool], CatBoostTrainingContext)
override in descendants if necessary
override in descendants if necessary
- returns
(preprocessedTrainPool, preprocessedEvalPools, catBoostTrainingContext)
- Attributes
- protected
- Definition Classes
- CatBoostClassifier → CatBoostPredictorTrait
-
final
val
probabilityCol: Param[String]
- Definition Classes
- HasProbabilityCol
-
final
val
randomSeed: IntParam
- Definition Classes
- TrainingParamsTrait
-
final
val
randomStrength: FloatParam
- Definition Classes
- TrainingParamsTrait
-
final
val
rawPredictionCol: Param[String]
- Definition Classes
- HasRawPredictionCol
-
final
val
rsm: FloatParam
- Definition Classes
- TrainingParamsTrait
-
final
val
samplingFrequency: EnumParam[ESamplingFrequency]
- Definition Classes
- TrainingParamsTrait
-
final
val
samplingUnit: EnumParam[ESamplingUnit]
- Definition Classes
- TrainingParamsTrait
-
def
save(path: String): Unit
- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
final
val
saveSnapshot: BooleanParam
- Definition Classes
- TrainingParamsTrait
-
final
val
scalePosWeight: FloatParam
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
val
scoreFunction: EnumParam[EScoreFunction]
- Definition Classes
- TrainingParamsTrait
-
final
def
set(paramPair: ParamPair[_]): CatBoostClassifier.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): CatBoostClassifier.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): CatBoostClassifier.this.type
- Definition Classes
- Params
-
final
def
setAllowConstLabel(value: Boolean): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setAllowWritingFiles(value: Boolean): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setApproxOnFullHistory(value: Boolean): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setAutoClassWeights(value: EAutoClassWeightsType): CatBoostClassifier.this.type
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
def
setBaggingTemperature(value: Float): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setBestModelMinTrees(value: Int): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setBootstrapType(value: EBootstrapType): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setBorderCount(value: Int): CatBoostClassifier.this.type
- Definition Classes
- QuantizationParamsTrait
-
final
def
setClassNames(value: Array[String]): CatBoostClassifier.this.type
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
def
setClassWeightsList(value: Array[Double]): CatBoostClassifier.this.type
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
def
setClassWeightsMap(value: LinkedHashMap[String, Double]): CatBoostClassifier.this.type
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
def
setClassesCount(value: Int): CatBoostClassifier.this.type
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
def
setConnectTimeout(value: Duration): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setCustomMetric(value: Array[String]): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setDefault(paramPairs: ParamPair[_]*): CatBoostClassifier.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): CatBoostClassifier.this.type
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDepth(value: Int): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setDiffusionTemperature(value: Float): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setEarlyStoppingRounds(value: Int): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setEvalMetric(value: String): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setFeatureBorderType(value: EBorderSelectionType): CatBoostClassifier.this.type
- Definition Classes
- QuantizationParamsTrait
-
final
def
setFeatureWeightsList(value: Array[Double]): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setFeatureWeightsMap(value: LinkedHashMap[String, Double]): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
def
setFeaturesCol(value: String): CatBoostClassifier
- Definition Classes
- Predictor
-
final
def
setFirstFeatureUsePenaltiesList(value: Array[Double]): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setFirstFeatureUsePenaltiesMap(value: LinkedHashMap[String, Double]): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setFoldLenMultiplier(value: Float): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setFoldPermutationBlock(value: Int): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setHasTime(value: Boolean): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setIgnoredFeaturesIndices(value: Array[Int]): CatBoostClassifier.this.type
- Definition Classes
- IgnoredFeaturesParams
-
final
def
setIgnoredFeaturesNames(value: Array[String]): CatBoostClassifier.this.type
- Definition Classes
- IgnoredFeaturesParams
-
final
def
setInputBorders(value: String): CatBoostClassifier.this.type
- Definition Classes
- QuantizationParamsTrait
-
final
def
setIterations(value: Int): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setL2LeafReg(value: Float): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
def
setLabelCol(value: String): CatBoostClassifier
- Definition Classes
- Predictor
-
final
def
setLeafEstimationBacktracking(value: ELeavesEstimationStepBacktracking): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setLeafEstimationIterations(value: Int): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setLeafEstimationMethod(value: ELeavesEstimation): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setLearningRate(value: Float): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setLoggingLevel(value: ELoggingLevel): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setLossFunction(value: String): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setMetricPeriod(value: Int): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setModelShrinkMode(value: EModelShrinkMode): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setModelShrinkRate(value: Float): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setMvsReg(value: Float): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setNanMode(value: ENanMode): CatBoostClassifier.this.type
- Definition Classes
- QuantizationParamsTrait
-
final
def
setOdPval(value: Float): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setOdType(value: EOverfittingDetectorType): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setOdWait(value: Int): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setOneHotMaxSize(value: Int): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setPenaltiesCoefficient(value: Float): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setPerFloatFeatureQuantizaton(value: Array[String]): CatBoostClassifier.this.type
- Definition Classes
- QuantizationParamsTrait
-
final
def
setPerObjectFeaturePenaltiesList(value: Array[Double]): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setPerObjectFeaturePenaltiesMap(value: LinkedHashMap[String, Double]): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
def
setPredictionCol(value: String): CatBoostClassifier
- Definition Classes
- Predictor
-
def
setProbabilityCol(value: String): CatBoostClassifier
- Definition Classes
- ProbabilisticClassifier
-
final
def
setRandomSeed(value: Int): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setRandomStrength(value: Float): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
def
setRawPredictionCol(value: String): CatBoostClassifier
- Definition Classes
- Classifier
-
final
def
setRsm(value: Float): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setSamplingFrequency(value: ESamplingFrequency): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setSamplingUnit(value: ESamplingUnit): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setSaveSnapshot(value: Boolean): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setScalePosWeight(value: Float): CatBoostClassifier.this.type
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
def
setScoreFunction(value: EScoreFunction): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setSnapshotFile(value: String): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setSnapshotInterval(value: Duration): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setSparkPartitionCount(value: Int): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setSubsample(value: Float): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setTargetBorder(value: Float): CatBoostClassifier.this.type
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
def
setThreadCount(value: Int): CatBoostClassifier.this.type
- Definition Classes
- ThreadCountParams
-
def
setThresholds(value: Array[Double]): CatBoostClassifier
- Definition Classes
- ProbabilisticClassifier
-
final
def
setTrainDir(value: String): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setUseBestModel(value: Boolean): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setWorkerInitializationTimeout(value: Duration): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
def
setWorkerMaxFailures(value: Int): CatBoostClassifier.this.type
- Definition Classes
- TrainingParamsTrait
-
final
val
snapshotFile: Param[String]
- Definition Classes
- TrainingParamsTrait
-
final
val
snapshotInterval: DurationParam
- Definition Classes
- TrainingParamsTrait
-
final
val
sparkPartitionCount: IntParam
- Definition Classes
- TrainingParamsTrait
-
final
val
subsample: FloatParam
- Definition Classes
- TrainingParamsTrait
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
final
val
targetBorder: FloatParam
- Definition Classes
- ClassifierTrainingParamsTrait
-
final
val
threadCount: IntParam
- Definition Classes
- ThreadCountParams
-
val
thresholds: DoubleArrayParam
- Definition Classes
- HasThresholds
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
def
train(dataset: Dataset[_]): CatBoostClassificationModel
- Attributes
- protected
- Definition Classes
- CatBoostPredictorTrait → Predictor
-
final
val
trainDir: Param[String]
- Definition Classes
- TrainingParamsTrait
-
def
transformSchema(schema: StructType): StructType
- Definition Classes
- Predictor → PipelineStage
-
def
transformSchema(schema: StructType, logging: Boolean): StructType
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
- Definition Classes
- CatBoostClassifier → Identifiable
-
final
val
useBestModel: BooleanParam
- Definition Classes
- TrainingParamsTrait
-
def
validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType
- Attributes
- protected
- Definition Classes
- ProbabilisticClassifierParams → ClassifierParams → PredictorParams
-
def
validateLabel(label: Double, numClasses: Int): Unit
- Attributes
- protected
- Definition Classes
- Classifier
-
def
validateNumClasses(numClasses: Int): Unit
- Attributes
- protected
- Definition Classes
- Classifier
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
val
weightCol: Param[String]
- Definition Classes
- HasWeightCol
-
final
val
workerInitializationTimeout: DurationParam
- Definition Classes
- TrainingParamsTrait
-
final
val
workerMaxFailures: IntParam
- Definition Classes
- TrainingParamsTrait
-
def
write: MLWriter
- Definition Classes
- DefaultParamsWritable → MLWritable