Metric
- Contains
-
The metric values for the training and test sets.
The table below lists the names of parameters that define the metric values to output. The values of all functions defined by these parameters are output.Command-line version parameters Python parameters R parameters --custom-metric
custom_metric
custom_loss --loss-function
loss_function loss_function --eval-metric
eval_metric eval_metric Command-line version parameters Python parameters R parameters --custom-metric
custom_metric
custom_loss --loss-function
loss_function loss_function --eval-metric
eval_metric eval_metric - Format
-
The first row describes the data provided in the file.
Format:
iter<\t><loss 1><loss 2><\t>...<\t><loss N>
- The metric names are expanded by colon-separated numbers if several validation datasets are input. The numbers correspond to the serial number of the input dataset.
All the rows except the first contain information for the specific iteration of building the tree.
Format:
<tree index><\t><loss 1><loss 2><\t>...<\t><loss N>
- Examples
-
iter<\t>Logloss<\t>AUC 0<\t>0.6637258841<\t>0.8800403474 1<\t>0.6358649829<\t>0.8898645092 2<\t>0.6118586328<\t>0.8905880184 3<\t>0.5882755767<\t>0.8911104564 4<\t>0.5665035887<\t>0.8933460724
The output for three input validation datasets:iter<\t>RMSE<\t>RMSE:1<\t>RMSE:2 0<\t>0.114824346<\t>0.1105841934<\t>0.08683344953 1<\t>0.1136556268<\t>0.1095536596<\t>0.08584400666 2<\t>0.1125784149<\t>0.10852689<\t>0.08494974738 3<\t>0.1114784956<\t>0.1075251632<\t>0.08401943147 4<\t>0.1103751142<\t>0.106557555<\t>0.08312388916