Python
Purpose
Apply the model in Python format. The method is available within the output Python file with the model description.
Alert
-
The
apply_catboost_model
method is inferior in performance compared to the native CatBoost application methods, especially on large models and datasets.
Dependencies
CityHash v.1 library. The correct version is also available in the CatBoost repository.
Method call format
For datasets that contain only numerical features:
apply_catboost_model(float_features)
For datasets that contain both numerical and categorical features:
apply_catboost_model(float_features,
cat_features)
Parameters
float_features
The list of numerical features.
Possible types:
- list of int
- list of float
cat_features
The list of categorical features.
Possible types:
- list of int
- list of float
- list of strings
Note
Numerical and categorical features must be passed separately in the same order they appear in the train dataset.
For example, let's assume that the train dataset contains the following features:
- Numerical features:
f1
,f3
- Categorical features:
f2
,f4
In this case, the following code must be used to apply the model:
apply_catboost_model(float_features=[f1,f3],
cat_features=[f2,f4])
Related information
--model-format
key of the command-line train mode
Type of return value
numpy.ndarray (identical to the [CatBoost()](python-reference_catboost.md).[predict](python-reference_catboost_predict.md)(prediction_type='RawFormulaVal')
method output)Train a model