Yandex
CatBoost
 
Contents
Overview of CatBoost
Installation
Python package
R package
Command-line version
Applying models
Objectives and metrics
Model analysis
Data format description
Parameter tuning
Speeding up the training
Data visualization
FAQ
Educational materials
Development and contributions
Algorithm details
Contacts
Quick start
Training parameters
CatBoost
CatBoostClassifier
CatBoostRegressor
cv
datasets
FeaturesData
MetricVisualizer
Pool
sum_models
to_classifier
to_regressor
train
Text processing
utils
Usage examples
CatBoostClassifier
fit
predict
predict_proba
Attributes
calc_feature_statistics
compare
copy
eval_metrics
get_all_params
get_best_iteration
get_best_score
get_borders
get_evals_result
get_feature_importance
get_metadata
get_object_importance
get_param
get_params
get_scale_and_bias
get_test_eval
grid_search
is_fitted
load_model
plot_predictions
plot_tree
randomized_search
save_borders
save_model
score
set_feature_names
set_params
set_scale_and_bias
shrink
staged_predict
staged_predict_proba
Overview of CatBoost
Installation
Python package installation
pip install
conda install
Build from source on Linux and macOS
Build from source on Windows
Build a wheel package