Metric

Contains

TheĀ metric values for the training and test sets.

The table below lists the names of parameters that define the metric values to output. The values of all functions defined by these parameters are output.

Command-line version parameters Python parameters R parameters
--custom-metric custom_metric custom_loss
--loss-function loss-function loss-function
--eval-metric eval-metric eval-metric

Format

  • The first row describes the data provided in the file.

    Format:

    iter<\t><loss 1><loss 2><\t>...<\t><loss N>
    
  • The metric names are expanded by colon-separated numbers if several validation datasets are input. The numbers correspond to the serial number of the input dataset.

  • All the rows except the first contain information for the specific iteration of building the tree.

    Format:

    <tree index><\t><loss 1><loss 2><\t>...<\t><loss N>
    

Examples

iter<\t>Logloss<\t>AUC
0<\t>0.6637258841<\t>0.8800403474
1<\t>0.6358649829<\t>0.8898645092
2<\t>0.6118586328<\t>0.8905880184
3<\t>0.5882755767<\t>0.8911104564
4<\t>0.5665035887<\t>0.8933460724

The output for three input validation datasets:

iter<\t>RMSE<\t>RMSE:1<\t>RMSE:2
0<\t>0.114824346<\t>0.1105841934<\t>0.08683344953
1<\t>0.1136556268<\t>0.1095536596<\t>0.08584400666
2<\t>0.1125784149<\t>0.10852689<\t>0.08494974738
3<\t>0.1114784956<\t>0.1075251632<\t>0.08401943147
4<\t>0.1103751142<\t>0.106557555<\t>0.08312388916