set_scale_and_bias
Set the scale and bias.
Method call format
set_scale_and_bias(scale, bias)
Parameters
scale
Description
The model scale.
The model prediction results are calculated as follows:
The value of this parameters affects the prediction by changing the default value of the scale.
Possible types
float
Default value
1
bias
Description
The model bias.
The model prediction results are calculated as follows:
The value of this parameters affects the prediction by changing the default value of the bias.
Possible types
float
Default value
Depends on the value of the --boost-from-average
for the Command-line version parameter:
- True — The best constant value for the specified loss function
- False — 0
Examples
from catboost import CatBoostRegressor, Pool
import numpy as np
train_data = [[1, 4, 5, 6],
[4, 5, 6, 7],
[30, 40, 50, 60]]
eval_data = [[2, 4, 6, 8],
[1, 4, 50, 60]]
train_labels = [10, 20, 30]
model = CatBoostRegressor()
print("Default scale and bias: " + str(model.get_scale_and_bias()))
model.set_scale_and_bias(0.5, 0.5)
print("Modified scale and bias: " + str(model.get_scale_and_bias()))
The output of this example:
Default scale and bias: (1.0, 0.0)
Modified scale and bias: (0.5, 0.5)