get_fpr_curve
Return points of the FPR curve.
Method call format
get_fpr_curve(model=None,
data=None,
curve=None,
thread_count=-1,
plot=False)
Parameters
model
Description
The trained model.
Possible types
catboost.CatBoost
Default value
None
data
Description
A set of samples to build the FPR curve with.
Should not be used with the curve
parameter.
Possible types
- catboost.Pool
- list of catboost.Pool
Default value
None
curve
Description
ROC curve points.
Should not be used with the data
parameter.
Required if the data
and model
parameters are set to None.
It is strictly recommended to use the output of the get_roc_curve function as the value of this parameter.
The input data must certain criteria:
- The threshold values should not increase.
- There should not be any repetitions of the fpr-tpr- threshold triplets.
Possible types
tuple of three arrays (fpr, tpr, thresholds)
Default value
None
thread_count
Description
The number of threads to use.
Optimizes the speed of execution. This parameter doesn't affect results.
Possible types
int
Default value
-1 (the number of threads is equal to the number of processor cores)
plot
Description
Plot a chart based on the found points.
Possible types
bool
Default value
False
Type of return value
tuple of two arrays (thresholds, fpr)
Usage examples
from catboost import CatBoostClassifier, Pool
from catboost.utils import get_roc_curve, get_fpr_curve
train_data = [[1,3],
[0,4],
[1,7],
[3,0]]
train_labels = [1,0,1,1]
catboost_pool = Pool(train_data, train_labels)
model = CatBoostClassifier(learning_rate=0.03)
model.fit(train_data, train_labels, verbose=False)
roc_curve_values = get_roc_curve(model, catboost_pool)
(thresholds, fpr) = get_fpr_curve(curve=roc_curve_values, plot=True)
print(thresholds)
print(fpr)
Output:
[1. 0.55302101 0.5508888 0.50891881 0. ]
[0. 0. 0. 0. 1.]