get_roc_curve
Return points of the ROC curve.
This information is used to plot the ROC curve.
Method call format
get_roc_curve(model,
data,
thread_count=-1,
plot=False)
Parameters
model
Description
The trained model.
Possible types
catboost.CatBoost
Default value
Required parameter
data
Description
A set of samples to build the ROC curve with.
Possible types
- catboost.Pool
- list of catboost.Pool
Default value
Required parameter
thread_count
Description
The number of threads to use.
Optimizes the speed of execution. This parameter doesn't affect results.
Possible type
int
Default value
-1 (the number of threads is equal to the number of processor cores)
plot
Description
Plot a chart based on the found points.
Possible types
bool
Default value
False
Type of return value
tuple of three arrays (fpr, tpr, thresholds)
Usage examples
from catboost import CatBoostClassifier, Pool
from catboost.utils import get_roc_curve
train_data = [[1,3],
[0,4],
[1,7],
[0,3]]
train_labels = [1,0,1,1]
catboost_pool = Pool(train_data, train_labels)
model = CatBoostClassifier(learning_rate=0.03)
model.fit(train_data, train_labels, verbose=False)
(fpr, tpr, thresholds) = get_roc_curve(model, catboost_pool, plot=True)
print(fpr)
print(tpr)
print(thresholds)
Output:
[0. 0. 0. 0. 1.]
[0. 0.33333333 0.66666667 1. 1. ]
[1. 0.53533186 0.52910032 0.50608183 0. ]